

Australian Government

Theme 3 - Threatened Species

Quantifying the distribution, important areas and overlap with potential threats for pygmy blue whales on the NW Shelf

Michele Thums, Luciana Ferreira

Acknowledgements and collaborators

Funding provided by Santos, helping to understand Western Australia's marine environment Special thanks to Libby Howitt at Santos

- Rob McCauley, Centre for Marine Science and Technology (CMST), Curtin University
- Chari Pattiaratchi and Paul Thomson, UWA and IMOS's Australian National Facility for Ocean Gliders (ANFOG)
- Curt and Micheline Jenner, Centre for Whale Research
- Mike Double, Virginia Andrews Goff, Brian Miller, Australian Marine Mammal Centre
- Margie Morrice, Parks Australia and Natalie Kelly, Australian Antarctic Division
- Danielle Harris, Sea Mammal Research Unit

Pygmy blue whales

- Listed as endangered
- Distribution overlaps with industry activities
- Limited understanding of movement, distribution and biological important areas (BIA)
- Current management precautionary

Centre for Whale Research

OBJECTIVE: Quantify the movement, distribution and threats to pygmy blue whales on the NW Shelf and to refine BIAs.

Commonwealth of Australia 2015

Pygmy blue whale distribution

Need to refine distribution and BIAs on NW Shelf

- Based on limited data, especially NW Shelf
- Visual survey methods difficult
- Our approach to obtain spatial data on this species
 - Deploy satellite tags
 - Acoustic surveys (on board gliders and fixed)
 - Trial eDNA analysis
 - Use of existing data

Need to refine distribution and BIAs on NW Shelf

- Based on limited data, especially NW Shelf
- Visual survey methods difficult
- Our approach to obtain spatial data on this species
 - Deploy satellite tags
 - Acoustic surveys (on board gliders and fixed)
 - Trial eDNA analysis
 - Use of existing data

Satellite Tracking

Limpet tags

Attached at highest part of body **Pros:** 1. High spatial resolution location estimates,

- 2. Less invasive than transdermal tagsCons: 1. short deployment durations a few weeks on average
 - Also collect data on diving behaviour

Satellite tracking

- NW Cape June on northern migration
- Ashmore Reef in Nov on southern migration
- 8-10 tags at each site
- Collaboration with CWR

Centre for Whale Research

Refining biologically important areas (BIA)

Acoustic surveys - Gliders

IMOS slocum glider

Proposed glider acoustic survey paths

- Three gliders
- Peak of the northern migration
- Two fixed noise loggers at NW Cape deployed Apr 2018 to document temporal pattern

Black points are Double et al. tracking data

- Glider's usual job is to collect oceanographic data like this
- Here, can be used to understand whether the whales might target specific temperature fields or water bodies for example

- ~85 deployments of fixed sea noise loggers since 2000
- Calculate sets of heading boundaries and detection range as in purple polygon
- Semi automated detection algorithm for blue whale calls
- Number of individual whales calling at an instantaneous point in time (e.g. 15 mins)

Other existing datasets

- Try to compile all existing data, limited but useful:
 - Marine Mammal Observer Data
 - Other satellite tracking data
 - Visual survey/sightings data

Blue Whale Study

Synthesising the data to map/model distribution

- Can map whale spatial use using time spent in area analyses or similar (tracking data), or number of whales/ calling whales/ acoustic encounter rates
- But with modelling can understand the variables driving their distributions
- Generalised additive model (GAM) or similar
- Whale/whale call presence, number of calling whales/ encounter rates
- Bathymetry, sea surface temp, chlorophyll a, etc.

e.g. Humpback whale distribution model predictions

Assessment of potential threats

Australian Government

- Once we have distribution model/maps and refined BIAs
- Can assess overlap with vessel movement and industrial infrastructure & activities
- Threat may be highest where high density of the potential threat (e.g ships) overlaps with high use areas/high habitat suitability for whales
- High priorities in the CMP
- Improved understanding to assess impacts and base mitigation

Whale distribution map

