This page has been archived and kept as a reference. Content on this page may be out of date.


Physical circulation

A two-dimensional numerical hydrodynamic model was applied to describe the movement of water in the vicinity of the farm. The numerical model computed water surface elevations and horizontal velocity components on a computational domain that covered the majority of Conn Creek and surrounding mangrove catchment. The model was validated against observed current velocities within the creek. The flushing characteristics of Conn Creek were simulated by releasing a virtual passive tracer into the model from within a sub-region of Conn Creek that included the area of the farm. The tracer was initialised within the sub-region with a concentration of 100mg L-1 and zero elsewhere. Predicted tidal forcing was applied to the domain and the advection/diffusion of the tracer was simulated using the computed hydrodynamics during both spring and neap tide.

In the following animations, the predicted concentration of the plume of virtual passive tracer is given by the accompanying colourbar, with the maximum concentration (100mg L-1) shown as red, changing to yellow for 5mg L-1. The simulated plume becomes transparent when concentration approaches background levels.

These animations show the modelled dispersion of this passive tracer in Conn Creek.

Neap mangroves flushshows the behaviour of the tracer during a neap tide cycle.


Colour bar

Spring mangroves flushshows the behaviour of the tracer during a spring tide cycle.

Colour bar